
Neural Networks 

Lecture 9
Ways of speeding up the learning  and 

preventing overfitting



Five ways to speed up learning
• Use an adaptive global learning rate

– Increase the rate slowly if its not diverging
– Decrease the rate quickly if it starts diverging

• Use separate adaptive learning rate on each connection
– Adjust using consistency of gradient on that weight axis

• Use momentum
– Instead of using the gradient to change the position of 

the weight “particle”, use it to change the velocity. 
• Use a stochastic estimate of the gradient from a few cases

– This works very well on large, redundant datasets.
• Don’t go in the direction of steepest descent.

– The gradient does not point at the minimum.
• Can we preprocess the data or do something to the gradient so 

that we move directly towards the minimum? 



The momentum method

Imagine a ball on the error 
surface with velocity v.
– It starts off by following the 

gradient, but once it has 
velocity, it no longer does 
steepest descent. 

• It damps oscillations by 
combining gradients with 
opposite signs.

• It builds up speed in 
directions with a gentle but 
consistent gradient. 

• On an inclined plane it 
reaches a terminal velocity.
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Adaptive learning rates on each connection

• Use a global learning rate 
multiplied by a local gain 
on each connection.

• Increase the local gains if 
the gradient does not 
change sign.

• Use additive increases and 
multiplicative decreases.
– This ensures that big 

learning rates decay 
rapidly when 
oscillations start. 95.*)1()(

05.)1()(

0)1()(




























tgtgelse

tgtgthen

t
w
Et

w
Eif

w
Egw

ijij

ijij

ijij

ij
ijij 



• Batch learning does 
steepest descent on the 
error surface

Online learning updates the 
weights after each training 
case. It zig-zags around the 
direction of steepest descent.
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Online versus batch learning

constraint from 
training case 1

constraint from 
training case 2



Stochastic gradient descent

• If the dataset is highly redundant, the gradient 
on the first half is almost identical to the gradient 
on the second half. 
– So instead of computing the full gradient, 

update the weights using the gradient on the 
first half and then get a gradient for the new 
weights on the second half.

– The extreme version is to update the weights 
after each example, but balanced mini-
batches are just as good and faster in matlab.



Extra problems that occur in multilayer non-
linear networks

• If we start with a big learning rate, the bias and all of the 
weights for one of the output units may become very 
negative.
– The output unit is then very firmly off and it will never 

produce a significant error derivative. 
– So it will never recover (unless we have weight-

decay).
• In classification networks that use a squared error or a 

cross-entropy error, the best guessing strategy is to 
make each output unit produce an output equal to the 
proportion of time it should be a 1. 
– The network finds this strategy quickly and takes a 

long time to improve on it. So it looks like a local 
minimum.



Overfitting 

• The training data contains information about the 
regularities in the mapping from input to output. But it 
also contains noise
– The target values may be unreliable.
– There is sampling error. There will be accidental 

regularities just because of the particular training 
cases that were chosen.

• When we fit the model, it cannot tell which regularities 
are real and which are caused by sampling error. 
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling 

error really well. This is a disaster.



Preventing overfitting

• Use a model that has the right capacity:
– enough to model the true regularities
– not enough to also model the spurious 

regularities (assuming they are weaker).
• Standard ways to limit the capacity of a neural 

net:
– Limit the number of hidden units.
– Limit the size of the weights.
– Stop the learning before it has time to overfit.



Limiting the size of the weights

• Weight-decay involves 
adding an extra term to the 
cost function that penalizes 
the squared weights.
– Keeps weights small 

unless they have big 
error derivatives.
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Weight-decay via noisy inputs

• Weight-decay reduces the effect 
of noise in the inputs. 
– The noise variance is 

amplified by the squared 
weight

• The amplified noise makes an 
additive contribution to the 
squared error.
– So minimizing the squared 

error tends to minimize the 
squared weights when the 
inputs are noisy.

• It gets more complicated for 
non-linear networks.
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Other kinds of weight penalty

• Sometimes it works better to 
penalize the absolute values 
of the weights.
– This makes some weights 

equal to zero which helps 
interpretation.

• Sometimes it works better to 
use a weight penalty that has 
negligible effect on large
weights.

•
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The effect of weight-decay

• It prevents the network from using weights that it does 
not need.
– This can often improve generalization a lot. 
– It helps to stop it from fitting the sampling error. 
– It makes a smoother model in which the output 

changes more slowly as the input changes. w
• If the network has two very similar inputs it prefers to put 

half the weight on each rather than all the weight on one.

w/2 w/2 w 0



Deciding how much to restrict the capacity

• How do we decide which limit to use and how 
strong to make the limit?
– If we use the test data we get an unfair 

prediction of the error rate we would get on 
new test data. 

– Suppose we compared a set of models that 
gave random results, the best one on a 
particular dataset would do better than 
chance.  But it wont do better than chance on 
another test set. 

• So use a separate validation set to do model 
selection.



Using a validation set

• Divide the total dataset into three subsets:
– Training data is used for learning the 

parameters of the model.
– Validation data is not used of learning but is 

used for deciding what type of model and 
what amount of regularization works best.

– Test data is used to get a final, unbiased 
estimate of how well the network works. We 
expect this estimate to be worse than on the 
validation data.

• We could then re-divide the total dataset to get 
another unbiased estimate of the true error rate.



Preventing overfitting by early stopping

• If we have lots of data and a big model, its very 
expensive to keep re-training it with different 
amounts of weight decay.

• It is much cheaper to start with very small 
weights and let them grow until the performance 
on the validation set starts getting worse (but 
don’t get fooled by noise!)

• The capacity of the model is limited because the 
weights have not had time to grow big.



Why early stopping works

• When the weights are very 
small, every hidden unit is in 
its linear range.
– So a net with a large layer 

of hidden units is linear.
– It has no more capacity 

than a linear net in which 
the inputs are directly 
connected to the outputs!

• As the weights grow, the 
hidden units start using their 
non-linear ranges so the 
capacity grows.
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