
Neural Networks

Lecture 9
Ways of speeding up the learning and

preventing overfitting

Five ways to speed up learning
• Use an adaptive global learning rate

– Increase the rate slowly if its not diverging
– Decrease the rate quickly if it starts diverging

• Use separate adaptive learning rate on each connection
– Adjust using consistency of gradient on that weight axis

• Use momentum
– Instead of using the gradient to change the position of

the weight “particle”, use it to change the velocity.
• Use a stochastic estimate of the gradient from a few cases

– This works very well on large, redundant datasets.
• Don’t go in the direction of steepest descent.

– The gradient does not point at the minimum.
• Can we preprocess the data or do something to the gradient so

that we move directly towards the minimum?

The momentum method

Imagine a ball on the error
surface with velocity v.
– It starts off by following the

gradient, but once it has
velocity, it no longer does
steepest descent.

• It damps oscillations by
combining gradients with
opposite signs.

• It builds up speed in
directions with a gentle but
consistent gradient.

• On an inclined plane it
reaches a terminal velocity.

w
Ev

t
w
Etw

t
w
Etv

tvtw

t
w
Etvtv

1
1)(

)()1(

)()1(

)()(

)()1()(

Adaptive learning rates on each connection

• Use a global learning rate
multiplied by a local gain
on each connection.

• Increase the local gains if
the gradient does not
change sign.

• Use additive increases and
multiplicative decreases.
– This ensures that big

learning rates decay
rapidly when
oscillations start. 95.*)1()(

05.)1()(

0)1()(

tgtgelse

tgtgthen

t
w
Et

w
Eif

w
Egw

ijij

ijij

ijij

ij
ijij

• Batch learning does
steepest descent on the
error surface

Online learning updates the
weights after each training
case. It zig-zags around the
direction of steepest descent.

w1

w2

w1

w2

Online versus batch learning

constraint from
training case 1

constraint from
training case 2

Stochastic gradient descent

• If the dataset is highly redundant, the gradient
on the first half is almost identical to the gradient
on the second half.
– So instead of computing the full gradient,

update the weights using the gradient on the
first half and then get a gradient for the new
weights on the second half.

– The extreme version is to update the weights
after each example, but balanced mini-
batches are just as good and faster in matlab.

Extra problems that occur in multilayer non-
linear networks

• If we start with a big learning rate, the bias and all of the
weights for one of the output units may become very
negative.
– The output unit is then very firmly off and it will never

produce a significant error derivative.
– So it will never recover (unless we have weight-

decay).
• In classification networks that use a squared error or a

cross-entropy error, the best guessing strategy is to
make each output unit produce an output equal to the
proportion of time it should be a 1.
– The network finds this strategy quickly and takes a

long time to improve on it. So it looks like a local
minimum.

Overfitting

• The training data contains information about the
regularities in the mapping from input to output. But it
also contains noise
– The target values may be unreliable.
– There is sampling error. There will be accidental

regularities just because of the particular training
cases that were chosen.

• When we fit the model, it cannot tell which regularities
are real and which are caused by sampling error.
– So it fits both kinds of regularity.
– If the model is very flexible it can model the sampling

error really well. This is a disaster.

Preventing overfitting

• Use a model that has the right capacity:
– enough to model the true regularities
– not enough to also model the spurious

regularities (assuming they are weaker).
• Standard ways to limit the capacity of a neural

net:
– Limit the number of hidden units.
– Limit the size of the weights.
– Stop the learning before it has time to overfit.

Limiting the size of the weights

• Weight-decay involves
adding an extra term to the
cost function that penalizes
the squared weights.
– Keeps weights small

unless they have big
error derivatives.

i
i

i

i
ii

i
i

w
Ew

w
Cwhen

w
w
E

w
C

wEC

1

2
2

,0

w

C

•

•

Weight-decay via noisy inputs

• Weight-decay reduces the effect
of noise in the inputs.
– The noise variance is

amplified by the squared
weight

• The amplified noise makes an
additive contribution to the
squared error.
– So minimizing the squared

error tends to minimize the
squared weights when the
inputs are noisy.

• It gets more complicated for
non-linear networks.

i

j

),0(

),0(ˆ

2

22

ii

i

i
iii

i
i

Nx

w

wNxwy

•

•

Other kinds of weight penalty

• Sometimes it works better to
penalize the absolute values
of the weights.
– This makes some weights

equal to zero which helps
interpretation.

• Sometimes it works better to
use a weight penalty that has
negligible effect on large
weights.

•

0

0

The effect of weight-decay

• It prevents the network from using weights that it does
not need.
– This can often improve generalization a lot.
– It helps to stop it from fitting the sampling error.
– It makes a smoother model in which the output

changes more slowly as the input changes. w
• If the network has two very similar inputs it prefers to put

half the weight on each rather than all the weight on one.

w/2 w/2 w 0

Deciding how much to restrict the capacity

• How do we decide which limit to use and how
strong to make the limit?
– If we use the test data we get an unfair

prediction of the error rate we would get on
new test data.

– Suppose we compared a set of models that
gave random results, the best one on a
particular dataset would do better than
chance. But it wont do better than chance on
another test set.

• So use a separate validation set to do model
selection.

Using a validation set

• Divide the total dataset into three subsets:
– Training data is used for learning the

parameters of the model.
– Validation data is not used of learning but is

used for deciding what type of model and
what amount of regularization works best.

– Test data is used to get a final, unbiased
estimate of how well the network works. We
expect this estimate to be worse than on the
validation data.

• We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

Preventing overfitting by early stopping

• If we have lots of data and a big model, its very
expensive to keep re-training it with different
amounts of weight decay.

• It is much cheaper to start with very small
weights and let them grow until the performance
on the validation set starts getting worse (but
don’t get fooled by noise!)

• The capacity of the model is limited because the
weights have not had time to grow big.

Why early stopping works

• When the weights are very
small, every hidden unit is in
its linear range.
– So a net with a large layer

of hidden units is linear.
– It has no more capacity

than a linear net in which
the inputs are directly
connected to the outputs!

• As the weights grow, the
hidden units start using their
non-linear ranges so the
capacity grows.

outputs

inputs

