Neural Networks

Lecture 9
Ways of speeding up the learning and
preventing overfitting



Five ways to speed up learning

Use an adaptive global learning rate

— Increase the rate slowly if its not diverging

— Decrease the rate quickly If it starts diverging

Use separate adaptive learning rate on each connection

— Adjust using consistency of gradient on that weight axis
Use momentum

— Instead of using the gradient to change the position of
the weight “particle”, use it to change the velocity.

Use a stochastic estimate of the gradient from a few cases
— This works very well on large, redundant datasets.
Don’t go in the direction of steepest descent.

— The gradient does not point at the minimum.

« Can we preprocess the data or do something to the gradient so
that we move directly towards the minimum?



The momentum method

Imagine a ball on the error v(t) = a v(t—1) —& 25 (1)
surface with velocity v.

— It starts off by following the

gradient, but once it has Aw(t) = v(t)
velocity, it no longer does OE
steepest descent. =@ Wi==a— )
« It damps oscillations by OE
combining gradients with =a AwW(t-1)—¢ W (t)

opposite signs.

* |t builds up speed in
directions with a gentle but
consistent gradient.
L : 1 ok
« On an inclined plane it V(o) =——| —6—
reaches a terminal velocity. l-a



Adaptive learning rates on each connection

e Use a global learning rate
multiplied by a local gain
on each connection.

* Increase the local gains if
the gradient does not
change sign.

 Use additive increases and
multiplicative decreases.

— This ensures that big
learning rates decay
rapidly when
oscillations start.

oE
AW; =—¢ gj; W
I

J aVV'J
then glj (t) = glj (t —1) +.05

else g;;(t)=0;;(t—1D*.95

if [;5@8?0_3}0



e Batch learning does

Online versus batch learning

Online learning updates the
weights after each training

steepest descent on the case. It zig-zags around the

error surface

wl

w2

direction of steepest descent.

constraint from

training case 1 \

wl

=

constraint from
training case 2 —

w2




Stochastic gradient descent

 |f the dataset is highly redundant, the gradient
on the first half is almost identical to the gradient
on the second half.

— So instead of computing the full gradient,
update the weights using the gradient on the
first half and then get a gradient for the new
weights on the second half.

— The extreme version Is to update the weights
after each example, but balanced mini-
batches are just as good and faster in matlab.



Extra problems that occur in multilayer non-
linear networks

* If we start with a big learning rate, the bias and all of the
weights for one of the output units may become very
negative.

— The output unit is then very firmly off and it will never
produce a significant error derivative.

— So it will never recover (unless we have weight-
decay).

* In classification networks that use a squared error or a
cross-entropy error, the best guessing strategy is to
make each output unit produce an output equal to the
proportion of time it should be a 1.

— The network finds this strategy quickly and takes a
long time to improve on it. So it looks like a local
minimum.



Overfitting

e The training data contains information about the
regularities in the mapping from input to output. But it
also contains noise

— The target values may be unreliable.

— There is sampling error. There will be accidental
regularities just because of the particular training
cases that were chosen.

 When we fit the model, it cannot tell which regularities
are real and which are caused by sampling error.

— So It fits both kinds of regularity.

— If the model is very flexible it can model the sampling
error really well. This Is a disaster.



Preventing overfitting

« Use a model that has the right capacity:
— enough to model the true regularities

— not enough to also model the spurious
regularities (assuming they are weaker).

o Standard ways to limit the capacity of a neural

net:

— Limit t
— Limit t
— Stop t

ne number of hidden units.
ne size of the weights.

ne learning before it has time to overfit.



Limiting the size of the weights

Weight-decay involves eC=E+=Z ZW
adding an extra term to the
cost function that penalizes
the squared weights.

oC ok

—=——+ AW
— Keeps weights smalll oW @W
unless they have big
error derivatives. o
when L _ =0, w __L1CE
OW; A OW;




Weight-decay via noisy inputs

Weight-decay reduces the effect

of noise in the inputs.

— The noise variance is
amplified by the squared
weight

The amplified noise makes an
additive contribution to the
squared error.

— S0 minimizing the squared
error tends to minimize the
squared weights when the
Inputs are noisy.

It gets more complicated for
non-linear networks.

J=> wx+> N(Owo{)



Other kinds of weight penalty

e Sometimes it works better to

penalize the absolute values
of the weights.

— This makes some weights
equal to zero which helps

Interpretation. 0
e Sometimes it works better to

use a weight penalty that has
negligible effect on large 8
weights.




The effect of weight-decay

» It prevents the network from using weights that it does
not need.

— This can often improve generalization a lot.
— It helps to stop it from fitting the sampling error.

— It makes a smoother model in which the output
changes more slowly as the input changes. w

 If the network has two very similar inputs it prefers to put
half the weight on each rather than all the weight on one.

() ()
wW/2 w/2 W 0
78 3



Deciding how much to restrict the capacity

e How do we decide which limit to use and how
strong to make the limit?

— If we use the test data we get an unfair
prediction of the error rate we would get on
new test data.

— Suppose we compared a set of models that
gave random results, the best one on a
particular dataset would do better than
chance. But it wont do better than chance on
another test set.

e SO use a separate validation set to do model
selection.



Using a validation set

e Divide the total dataset into three subsets:

— Training data is used for learning the
parameters of the model.

— Validation data is not used of learning but is
used for deciding what type of model and
what amount of regularization works best.

— Test data is used to get a final, unbiased
estimate of how well the network works. We
expect this estimate to be worse than on the
validation data.

 We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.



Preventing overfitting by early stopping

 |f we have lots of data and a big model, its very
expensive to keep re-training it with different
amounts of weight decay.

 |tis much cheaper to start with very small
weights and let them grow until the performance
on the validation set starts getting worse (but
don’t get fooled by noise!)

* The capacity of the model is limited because the
weights have not had time to grow big.



Why early stopping works

When the weights are very
small, every hidden unit is in

its linear range.
outputs
— So a net with a large layer O O p

of hidden units is linear.
— It has no more capacity

than a linear net in which
the inputs are directly O O O Q Q Q
connected to the outputs!

As the weights grow, the
hidden units start using their
non-linear ranges so the Q Q _
capacity grows. INPUts

o T



